OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Lefteris Kokoris-Kogias (@LefKok)
Decentralized and Distributed Systems Lab (DEDIS)
Swiss Federal Institute of Technology Lausanne (EPFL)
Acknowledgements

Philipp Jovanovic (EPFL, CH)
Linus Gasser (EPFL, CH)
Nicolas Gailly (EPFL, CH)
Ewa Syta (Trinity College, USA)
Bryan Ford (EPFL, CH)
Talk Outline

• Motivation
• OmniLedger
• Evaluation
• Conclusion
Blockchain, Blockchain, Blockchain

• Bring transparency in the Digital World

• Minimise (or eradicate) the need for trusted third parties

• Cheaper and faster transactions against traditional methods (Banking)
Bitcoin vs OmniLedger

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bitcoin</th>
<th>OmniLedger*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>~4 TPS</td>
<td>~20.000 TPS</td>
</tr>
<tr>
<td>1-st Confirmation</td>
<td>~10 minutes</td>
<td>~1 second</td>
</tr>
<tr>
<td>Full Security</td>
<td>~60 minutes</td>
<td>~42 second</td>
</tr>
<tr>
<td>More Available Resources</td>
<td>No performance Gain</td>
<td>Linear Increase in Throughput</td>
</tr>
</tbody>
</table>

* Configuration with 1120 validators against a 12.5% adversary
Bitcoin vs OmniLedger

<table>
<thead>
<tr>
<th></th>
<th>Bitcoin</th>
<th>OmniLedger*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>~4 TPS</td>
<td>~20,000 TPS</td>
</tr>
<tr>
<td>1-st Confirmation</td>
<td>~10 minutes</td>
<td>~1 second</td>
</tr>
<tr>
<td>Full Security</td>
<td>~60 minutes</td>
<td>~42 second</td>
</tr>
<tr>
<td>More Available Resources</td>
<td>No performance Gain</td>
<td>Linear Increase in Throughput</td>
</tr>
</tbody>
</table>

* Configuration with 1120 validators against a 12.5% adversary
… But Scaling Blockchains is Not Easy
Elastico

L. Luu et al., A Secure Sharding Protocol for Open Blockchains, CCS 2016

Decentralization

ByzCoin

OmniLedger

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016

Distributed Ledger Landscape

Scale-Out

RSCoin

Security
No Scale-Out (Bitcoin)
Scale-Out (OmniLedger)

- How do validators choose which blockchain to work on?
- How can I pay a yellow vendor with greencoins?

```
<table>
<thead>
<tr>
<th>Shard</th>
<th>Shard</th>
</tr>
</thead>
<tbody>
<tr>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>
```

Double Throughput
Random Validator Assignment

- Let validators choose? —> All malicious validators can choose the same chain

- Randomly assign validators? —> Preserve security for adequately large shard size

![Graph showing required shard size vs. adversarial power with a failure probability of 10^{-6}]
Strawman: SimpleLedger

Overview

• Evolves in epochs e
• Trusted randomness beacon emits random value rnd_e
• Validators:
 ‣ Use rnd_e to compute shard assignment (ensures shard security)
 ‣ Process tx using consensus within one shard (ByzCoin)
Strawman: SimpleLedger

Security Drawbacks
• Randomness beacon: trusted third party
• No tx processing during validator re-assignment
• No cross-shard tx support

Performance Drawbacks
• ByzCoin failure mode
• High storage and bootstrapping cost
• Throughput vs. latency trade-off
Talk Outline

• Motivation
• OmniLedger
• Evaluation
• Conclusion
Roadmap

SimpleLedger
- Sharding via distributed randomness
- Smooth epoch transitions
- Atomix: Atomic cross-shard txs

Security
- ByzCoinX: Robust BFT consensus

Performance
- Shard ledger pruning
- Trust-but-verify validation: Throughput / Latency trade-off

OmniLedger
Roadmap

SimpleLedger

Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

Security

ByzCoinX: Robust BFT consensus

Performance

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

OmniLedger
Shard Validator Assignment

1. Temp. leader election (Can be biased)
2. Randomness generation (Output is unbiasable)
3. Shard assignment (using rnd_e)

* Syta, Ewa, et al. "Scalable bias-resistant distributed randomness." Oakland '17
Roadmap

SimpleLedger

Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

Security

ByzCoinX: Robust BFT consensus

OmniLedger

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off
Two-Phase Commit

Coordinator

Server

Query to commit

prepare / abort

Commit / Rollback

commit / abort
Atomix: Cross-Shard Transactions

Challenge:

- Cross-shard tx commit atomically or abort eventually

Solution: Atomix

- Client-managed protocol
 1. Client sends cross-shard tx to input shards
 2. Collect ACK/ERR proofs from input shards

 (a) If all input shards accept, commit to output shard, otherwise
 (b) abort and reclaim input funds

The Atomix protocol for secure cross-shard transactions
Challenge:
• Latency vs. throughput trade-off

Solution:
• Two-level “trust-but-verify” validation
• Low latency:
 ‣ Optimistically validate transactions by “insecure” shards
• High throughput:
 ‣ Batch optimistically validated blocks and audit by “secure” shards
Talk Outline

- Motivation
- OmniLedger
- Evaluation
- Conclusion
Implementation & Experimental Setup

Implementation

• OmniLedger and its subprotocols (ByzCoinX, Atomix, etc.) implemented in Go

• Based on DEDIS code
 ‣ Kyber crypto library
 ‣ Onet network library
 ‣ Cothority framework

• https://github.com/dedis

DeterLab Setup

• 48 physical machines up to 1800 clients
 ‣ Intel Xeon E5-2420 v2 (6 cores @ 2.2 GHz)
 ‣ 24 GB RAM
 ‣ 10 Gbps network link

• Network restrictions (per client)
 ‣ 20 Mbps bandwidth
 ‣ 200 ms round-trip latency
Evaluation: Scale-Out

<table>
<thead>
<tr>
<th>#validators (#shards)</th>
<th>70 (1)</th>
<th>140 (2)</th>
<th>280 (4)</th>
<th>560 (8)</th>
<th>1120 (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OmniLedger (tx/sec)</td>
<td>439</td>
<td>869</td>
<td>1674</td>
<td>3240</td>
<td>5850</td>
</tr>
<tr>
<td>Bitcoin (tx/sec)</td>
<td>~4</td>
<td>~4</td>
<td>~4</td>
<td>~4</td>
<td>~4</td>
</tr>
</tbody>
</table>

Scale-out throughput for 12.5%-adversary and **shard size 70** and 1200 validators
Evaluation: Throughput

Results for 1800 validators
Evaluation: Latency

Transaction confirmation latency in seconds for regular and multi-level validation

<table>
<thead>
<tr>
<th>#shards, adversary</th>
<th>4, 1%</th>
<th>25, 5%</th>
<th>70, 12.5%</th>
<th>600, 25%</th>
<th>Latency Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular validation</td>
<td>1.38</td>
<td>5.99</td>
<td>8.04</td>
<td>14.52</td>
<td>1 MB blocks</td>
</tr>
<tr>
<td>1st lvl. validation</td>
<td>1.38</td>
<td>1.38</td>
<td>1.38</td>
<td>4.48</td>
<td>500 KB blocks</td>
</tr>
<tr>
<td>2nd lvl. validation</td>
<td>1.38</td>
<td>55.89</td>
<td>41.89</td>
<td>62.96</td>
<td>16 MB blocks</td>
</tr>
<tr>
<td>Bitcoin</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Latency increase since optimistically validated blocks are batched into larger blocks for final validation to get better throughput.
Talk Outline

• Motivation
• OmniLedger
• Experimental Results
• Conclusion
Conclusion

- **OmniLedger – Secure scale-out distributed ledger framework**
 - Atomix: Client-managed cross-shard tx
 - ByzCoinX: Robust intra-shard BFT consensus
 - Sharding: Visa-level throughput and beyond
 - Trust-but-verify validation: No latency vs. throughput tradeoff
 - For PoW, PoS, permissioned, etc.

- **Code:** https://github.com/dedis

- **Contact:** eleftherios.kokoriskogias@epfl.ch, @LefKok