Microkernels Should Support Passive Objects

Bryan Ford

Jay Lepreau

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

baford@cs.utah.edu, lepreau@cs.utah.edu

Abstract

We believe that a passive object model, in which the
active entities or threads migrate between passive ob-
jects, 1s more appropriate than an active object model,
as the basic structure of a microkernel-based operat-
g system. A passive object model provides enhanced
performance and simplicity because it 1s more closely
matched to the basic nature of microprocessors and
the requirements of applications. It also provides more
functionality by making the flow of control between ob-
jects a first-class abstraction which can be eramined,
manipulated, and used to carry information about the
operation in progress.t

1 Introduction

A subject of controversy in the object-oriented
world is the choice of an active or passive object
model[4]. In the active model, an object, or collec-
tion of data, has associated with it a private set of
threads, or active execution contexts, which manip-
ulate 1ts data. To communicate, threads in active
objects send messages to threads in other objects.
In the passive model, objects do not inherently con-
tain threads: only “passive” instructions and data.
Threads are separate, first-class entities which exist
independently of objects. While a thread is “in” a
particular object, it may examine or modify the state
of that object, or migrate to a different object.

The evolution of modern operating systems toward
a microkernel implementation is closely tied to their
evolution toward an object-oriented structure. This
means that microkernels face the same issues as other
object-oriented systems, including the controversy be-
tween an active or passive object model. Through our

I This research was sponsored in part by the Hewlett-Packard
Research Grants Program.

research and experience, we have come to believe that,
for maximum performance and functionality, a passive
object model is necessary in the basic, bottom-level
structure of a microkernel.

We do not make the claim that the passive object
model 1s the best in higher-level parts of the system.
Many high-level applications are more naturally im-
plemented in terms of an active object model. Simi-
larly, we do not make the claim that only the passive
object model should be provided at the lowest level.
It may be the case that some uses of a system would
highly benefit from a low-level active object model,
the two models are not mutually exclusive. However,
we claim that at minimum a low-level passive object
model must be present for maximum performance and
functionality.

2 Benefits from Passive Objects

This section describes some of the benefits a passive
object model provides over an active model.

Passive objects more naturally support syn-
chronous object invocation, which is the common
case.

In practical microkernel-based systems, most inter-
object interactions are synchronous. When one ob-
ject invokes an operation on another, the common be-
havior is that processing in the first object stops and
waits until the operation invoked on the second object
is complete. This i1s purely a practical observation:
there are situations in which asynchronous invocation
is more useful, but these situations are the exception
rather than the rule. The passive object model natu-
rally supports this synchronous flow of control, while
the active model requires it to be implemented artifi-
cially.



Passive objects more closely model the nature of
the underlying hardware.

In the context of microkernels, first-class objects
are usually implemented as hardware-supported pro-
tection domains or address spaces. Threads, on the
other hand, are an abstraction almost always imple-
mented purely in software. The hardware only knows
about a simple instruction stream. A transfer of con-
trol between objects in a passive model naturally re-
duces to the crossing of a protection domain in hard-
Switching to a different thread in an active
model as part of inter-object communication has no
natural analog in the underlying hardware.

ware.

The implementation of inter-object control trans-
fer is simpler and faster with passive objects.

To transfer control between objects in an active
model, both the current object and the current thread
must be changed by the microkernel. In a passive
model, only the current object needs to be changed.
None of the state related to threads and scheduling
needs to be touched. Moving between passive objects
is fundamentally simpler than moving between active
objects, and therefore lends itself to simpler and faster
implementations.

The explicit nature of inter-object control transfer
makes more optimized implementations possible.

In an active object model, transfer of control be-
tween objects during synchronous operations is repre-
sented only implicitly by the state and actions of the
threads involved; it is not easily visible to the under-
lying implementation. In an active model, this flow
of control is represented explicitly as part of threads,
easily visible to and usable by the microkernel.

This permits well-known optimizations to control
transfer, such as those described in LRPC[1] and nu-
merous other optimizations in flexibly structured or
shared address space systems e.g., Lipto[5], Opal[3]?,
FLEX]2], and Mach In-Kernel Servers[8, 6].

Passive objects can be smaller and more
lightweight, because they involve less storage over-

head.

In an active object model, all objects must “own”
a full set of threads and their associated processing

20pal claims that threads remain within a single object, but
closer examination seems to indicate that the thread actually
migrates in the intra-node case.

and scheduling resources. In a passive model, objects
only need to contain their associated code and data,
plus a smaller set of system resources needed to allow
threads to enter the object and execute its code.

Passive objects more accurately model the require-
ments of real-time systems.

In the active model, the threads in each object con-
tain scheduling attributes such as execution priority,
which are unrelated to the attributes of the threads
in other objects. In real-time systems, however, if
processing in one object must wait for processing in
another object to complete, then the latter process-
ing must proceed at the same or a higher execution
priority than the former; otherwise priority inversion
can result. Satisfying this requirement in an active ob-
ject model often requires complex priority inheritance
schemes to be invoked every time control is transferred
between objects. In a passive model, execution prior-
ity, as part of a thread, naturally flows across object
boundaries, obviating the need for priority inheritance
mechanisms in this part of the system. The execution
priority of an operation is naturally associated with
what is being done and not where it is being done; the
passive model more easily supports this.

Passive objects make accurate resource account-
ing easier.

In a passive object model, resource accounting in-
formation can be attached to either threads or ob-
jects, whichever is most appropriate in a given situa-
tion. This allows resources used by servers on behalf
of clients to be charged to the client. An active object
model provides no convenient way to do this.

Interruption of operations in progress is more eas-
ily implemented with passive objects.

Often, due to asynchronous conditions, it is desired
to interrupt an operation invoked on another object.
To do this cleanly in an active model, it is not enough
merely to wake up the thread in the local object, be-
cause the corresponding thread in the server will con-
tinue processing the request without any indication
that the client no longer desires its completion. If
some entity wants to cleanly abort such an operation,
it must find the object which was invoked, know how
to interact with that object enough to send it a request
to abort the operation, and provide it with some kind
of identification specifying which operation i1s to be



aborted. This usually proves to be a complex and dif-
ficult process. The passive model, on the other hand,
provides a channel (the thread) through which stan-
dardized requests for interruption can be propagated
in a protected manner.

Passive objects are easier to implement and man-
age in user code.

The implementation of an active object must con-
tain code to create and manage its private set of
threads. In practice this turns out to be a compli-
cated task, especially on multiprocessors, because to
achieve maximum performance without excessive re-
source consumption, the number of threads running
and waiting for requests from other objects must at
all times be carefully balanced to fit the number of
processors available. If instead, the object’s code is
simply executed by threads migrating in from other
objects, this balancing occurs automatically.

In a passive model, it is easier for personality
servers to control the exvecution environment of
their subjects.

In the case of servers that emulate other operating
systems such as Unix or MS-DOS, system calls and
exceptions in the emulation environment are typically
converted into invocations on the personality server
object. In the active model, such an invocation leaves
a thread “loose” in the subject domain, which could
be woken up by conditions outside the server’s con-
trol, unless the microkernel and the personality server
are very carefully designed to prevent this. In the
passive model, once a thread enters the server it is
automatically “trapped” by the server; no additional
precautions need to be taken other than preventing
the subject domain from controlling the server.

3 Common Objections to Passive Ob-
jects

In this section we list a number of common objec-
tions to the passive object model in the context of
microkernels, and why they are not necessarily true.

“An active model is more ‘fundamental’ than a
passive model, because the latter can be imple-
mented in terms of the former.”

Either model can be implemented in terms of the
other. Implementing passive objects in terms of active

objects involves artificially putting to sleep and wak-
ing up threads when crossing object boundaries. Im-
plementing active objects in terms of passive objects
involves intermediary agents which explicitly maintain
asynchronous behavior. (These intermediary agents
can be implemented as parts of the calling or called
objects, so they do not necessarily imply more objects
or more protection-boundary crossing.)

Thus, as far as which is the more “fundamental”
model, passive and active objects are on even footing;
vet all of the advantages described previously apply
easily only to the passive model.

“A passive model provides less protection, because
clients must trust servers with their threads.”

Migration of a thread to a server object does not
necessarily grant the server any rights other than the
right to temporarily execute in its scheduling context.
With proper design, even this right can be revoked or
transferred back into the client object in a way that
fully maintains the protection of both the server and
the client. Our work on supporting migrating threads
on Mach[7] demonstrates how this can be done.

“The migration of threads violates encapsulation.
Objects should be independent.”

This suggests a vision of self-sufficient islands of
computation floating within an abstract sea of noth-
ingness, using only their own resources and relying on
nothing else. Unfortunately, reality is different: there
must always be some underlying fabric which deter-
mines just what it means to be an object, how oper-
ations are invoked on it, how it can find and operate
on other objects, and what assumptions it can make:
in short, the execution environment. A passive object
model simply includes as part of the basic fabric the
“power to execute,” rather than residing only within
the object itself.

“It is more difficult to program in a passive model,
because all objects must handle internal synchro-
nization issues.”

It is true that in an active object model, a sim-
ple object can be created requiring no internal syn-
chronization by creating just one thread in the object.
However, in a full microkernel implementation of pas-
sive objects, 1t often turns out to be extremely easy
to achieve the same effect; such as by creating only
one “activation record” on which incoming threads
can run, or by maintaining a global lock acquired and



released automatically on entry and exit from the ob-
ject.

“It’s easier to implement cross-node object invo-
cation in an active object model, because the un-
derlying hardware is inherently message-based.”

In some cases this is true. However, this does not
change the fact that the common case of object invo-
cation is synchronous. At some level synchronous ob-
ject invocations must be translated to asynchronous
network messages. This argument really just advo-
cates moving this translation out of the microkernel
and forcing applications to do it themselves. Consid-
ering the fact that most object invocations in a well-
tuned distributed system are in fact local, where syn-
chronous invocation is more efficient, even this is not
a very convincing argument.

“It’s not really tmportant whether a microkernel
implements passive or active objects as the under-
lying abstraction, and most conventional operat-
ing systems use active objects, so it’s best to stay
that way for backward compatibility.”

First, as we have already stated, object model is in
fact very important.

Second, it should be recognized that most “conven-
tional” operating systems are not object-oriented in
the first place. What are usually referred to as “ob-
jects” in these systems are extremely large, course-
grained processes communicating through high-level,
heavyweight channels. These traditional channels are
typically implemented outside of the microkernel any-
way, and therefore are not dependent on the under-
lying object model supported by the microkernel any
more than the rest of the system 1s.

Finally, we note that from an application’s perspec-
tive, even ones which directly interface with the mi-
crokernel’s basic abstractions, the difference in object
model 1s not necessarily highly visible. For the most
part, applications merely see passive objects as faster
and more flexible versions of active objects. This is
demonstrated in [7], in which active objects are re-
placed with passive objects in an existing system, in a
backward-compatible way, with no changes to clients
and only minor changes to servers.

4 Conclusion

As a fundamental execution model for microkernels,
passive objects provide more functionality, simplicity,

and speed than active objects, without giving up pro-
tection or other benefits.

References

[1] Brian N. Bershad, Thomas E. Anderson, Ed-
ward D. Lazowska, and Henry M. Levy.
Lightweight remote procedure call. ACM Transac-
tions on Computer Systems, 8(1):37-55, February
1990.

[2] John B. Carter, Bryan Ford, Mike Hibler, Ravin-
dra Kuramkote, Jeffrey Law, Jay Lepreau, Dou-
glas B. Orr, Leigh Stoller, and Mark Swanson.
FLEX: A tool for building efficient and flexible sys-
tems. In Proc. Fourth Workshop on Workstation
Operating Systems, October 1993. To appear.

[3] Jeffrey S. Chase, Henry M. Levy, Michael J. Fee-
ley, and Edward D. Lazowska. Sharing and pro-
tection in a single address space operating system.
Technical Report UW-CSE-93-04-02, University of
Washington Computer Science Department, April
1993.

[4] Roger S. Chin and Samuel T. Chanson. Dis-
tributed object-based programmingsystems. ACM
Computing Surveys, 23(1), March 1991.

[5] Peter Druschel, Larry L. Peterson, and Norman C.
Hutchinson. Beyond micro-kernel design: De-
coupling modularity and protection in Lipto. In
Proc. of the 12th International Conference on Dis-
tributed Computing Systems, pages 512-520, Yoko-
hama, Japan, June 1992.

[6] Bryan Ford, Mike Hibler, and Jay Lepreau. Notes
on thread models in Mach 3.0. Technical Report
UUCS-93-012, University of Utah Computer Sci-
ence Department, April 1993.

[7] Bryan Ford and Jay Lepreau. Evolving Mach 3.0
to use migrating threads. Technical Report UUCS-
93-022, University of Utah, August 1993. A por-
tion of this paper will appear in Proc. of the Winter
1994 USENIX Conference.

[8] Jay Lepreau, Mike Hibler, Bryan Ford, and Jeff
Law. In-kernel servers on Mach 3.0: Implemen-
tation and performance. In Proc. of the Third
USENIX Mach Symposium, pages 39-55, Santa Fe,
NM, April 1993.



