
Microkernels Should Support Passive ObjectsBryan Ford Jay LepreauDepartment of Computer ScienceUniversity of UtahSalt Lake City, UT 84112 USAbaford@cs.utah.edu, lepreau@cs.utah.eduAbstractWe believe that a passive object model, in which theactive entities or threads migrate between passive ob-jects, is more appropriate than an active object model,as the basic structure of a microkernel-based operat-ing system. A passive object model provides enhancedperformance and simplicity because it is more closelymatched to the basic nature of microprocessors andthe requirements of applications. It also provides morefunctionality by making the 
ow of control between ob-jects a �rst-class abstraction which can be examined,manipulated, and used to carry information about theoperation in progress.11 IntroductionA subject of controversy in the object-orientedworld is the choice of an active or passive objectmodel[4]. In the active model, an object, or collec-tion of data, has associated with it a private set ofthreads, or active execution contexts, which manip-ulate its data. To communicate, threads in activeobjects send messages to threads in other objects.In the passive model, objects do not inherently con-tain threads: only \passive" instructions and data.Threads are separate, �rst-class entities which existindependently of objects. While a thread is \in" aparticular object, it may examine or modify the stateof that object, or migrate to a di�erent object.The evolution of modern operating systems towarda microkernel implementation is closely tied to theirevolution toward an object-oriented structure. Thismeans that microkernels face the same issues as otherobject-oriented systems, including the controversy be-tween an active or passive object model. Through our1This researchwas sponsored in part by the Hewlett-PackardResearch Grants Program.

research and experience, we have come to believe that,for maximumperformance and functionality, a passiveobject model is necessary in the basic, bottom-levelstructure of a microkernel.We do not make the claim that the passive objectmodel is the best in higher-level parts of the system.Many high-level applications are more naturally im-plemented in terms of an active object model. Simi-larly, we do not make the claim that only the passiveobject model should be provided at the lowest level.It may be the case that some uses of a system wouldhighly bene�t from a low-level active object model;the two models are not mutually exclusive. However,we claim that at minimum a low-level passive objectmodel must be present for maximumperformance andfunctionality.2 Bene�ts from Passive ObjectsThis section describes some of the bene�ts a passiveobject model provides over an active model.Passive objects more naturally support syn-chronous object invocation, which is the commoncase.In practical microkernel-based systems, most inter-object interactions are synchronous. When one ob-ject invokes an operation on another, the common be-havior is that processing in the �rst object stops andwaits until the operation invoked on the second objectis complete. This is purely a practical observation:there are situations in which asynchronous invocationis more useful, but these situations are the exceptionrather than the rule. The passive object model natu-rally supports this synchronous 
ow of control, whilethe active model requires it to be implemented arti�-cially.



Passive objects more closely model the nature ofthe underlying hardware.In the context of microkernels, �rst-class objectsare usually implemented as hardware-supported pro-tection domains or address spaces. Threads, on theother hand, are an abstraction almost always imple-mented purely in software. The hardware only knowsabout a simple instruction stream. A transfer of con-trol between objects in a passive model naturally re-duces to the crossing of a protection domain in hard-ware. Switching to a di�erent thread in an activemodel as part of inter-object communication has nonatural analog in the underlying hardware.The implementation of inter-object control trans-fer is simpler and faster with passive objects.To transfer control between objects in an activemodel, both the current object and the current threadmust be changed by the microkernel. In a passivemodel, only the current object needs to be changed.None of the state related to threads and schedulingneeds to be touched. Moving between passive objectsis fundamentally simpler than moving between activeobjects, and therefore lends itself to simpler and fasterimplementations.The explicit nature of inter-object control transfermakes more optimized implementations possible.In an active object model, transfer of control be-tween objects during synchronous operations is repre-sented only implicitly by the state and actions of thethreads involved; it is not easily visible to the under-lying implementation. In an active model, this 
owof control is represented explicitly as part of threads,easily visible to and usable by the microkernel.This permits well-known optimizations to controltransfer, such as those described in LRPC[1] and nu-merous other optimizations in 
exibly structured orshared address space systems e.g., Lipto[5], Opal[3]2,FLEX[2], and Mach In-Kernel Servers[8, 6].Passive objects can be smaller and morelightweight, because they involve less storage over-head.In an active object model, all objects must \own"a full set of threads and their associated processing2Opal claims that threads remain within a single object, butcloser examination seems to indicate that the thread actuallymigrates in the intra-node case.

and scheduling resources. In a passive model, objectsonly need to contain their associated code and data,plus a smaller set of system resources needed to allowthreads to enter the object and execute its code.Passive objects more accurately model the require-ments of real-time systems.In the active model, the threads in each object con-tain scheduling attributes such as execution priority,which are unrelated to the attributes of the threadsin other objects. In real-time systems, however, ifprocessing in one object must wait for processing inanother object to complete, then the latter process-ing must proceed at the same or a higher executionpriority than the former; otherwise priority inversioncan result. Satisfying this requirement in an active ob-ject model often requires complex priority inheritanceschemes to be invoked every time control is transferredbetween objects. In a passive model, execution prior-ity, as part of a thread, naturally 
ows across objectboundaries, obviating the need for priority inheritancemechanisms in this part of the system. The executionpriority of an operation is naturally associated withwhat is being done and not where it is being done; thepassive model more easily supports this.Passive objects make accurate resource account-ing easier.In a passive object model, resource accounting in-formation can be attached to either threads or ob-jects, whichever is most appropriate in a given situa-tion. This allows resources used by servers on behalfof clients to be charged to the client. An active objectmodel provides no convenient way to do this.Interruption of operations in progress is more eas-ily implemented with passive objects.Often, due to asynchronous conditions, it is desiredto interrupt an operation invoked on another object.To do this cleanly in an active model, it is not enoughmerely to wake up the thread in the local object, be-cause the corresponding thread in the server will con-tinue processing the request without any indicationthat the client no longer desires its completion. Ifsome entity wants to cleanly abort such an operation,it must �nd the object which was invoked, know howto interact with that object enough to send it a requestto abort the operation, and provide it with some kindof identi�cation specifying which operation is to be



aborted. This usually proves to be a complex and dif-�cult process. The passive model, on the other hand,provides a channel (the thread) through which stan-dardized requests for interruption can be propagatedin a protected manner.Passive objects are easier to implement and man-age in user code.The implementation of an active object must con-tain code to create and manage its private set ofthreads. In practice this turns out to be a compli-cated task, especially on multiprocessors, because toachieve maximum performance without excessive re-source consumption, the number of threads runningand waiting for requests from other objects must atall times be carefully balanced to �t the number ofprocessors available. If instead, the object's code issimply executed by threads migrating in from otherobjects, this balancing occurs automatically.In a passive model, it is easier for personalityservers to control the execution environment oftheir subjects.In the case of servers that emulate other operatingsystems such as Unix or MS-DOS, system calls andexceptions in the emulation environment are typicallyconverted into invocations on the personality serverobject. In the active model, such an invocation leavesa thread \loose" in the subject domain, which couldbe woken up by conditions outside the server's con-trol, unless the microkernel and the personality serverare very carefully designed to prevent this. In thepassive model, once a thread enters the server it isautomatically \trapped" by the server; no additionalprecautions need to be taken other than preventingthe subject domain from controlling the server.3 Common Objections to Passive Ob-jectsIn this section we list a number of common objec-tions to the passive object model in the context ofmicrokernels, and why they are not necessarily true.\An active model is more `fundamental' than apassive model, because the latter can be imple-mented in terms of the former."Either model can be implemented in terms of theother. Implementing passive objects in terms of active

objects involves arti�cially putting to sleep and wak-ing up threads when crossing object boundaries. Im-plementing active objects in terms of passive objectsinvolves intermediary agents which explicitly maintainasynchronous behavior. (These intermediary agentscan be implemented as parts of the calling or calledobjects, so they do not necessarily imply more objectsor more protection-boundary crossing.)Thus, as far as which is the more \fundamental"model, passive and active objects are on even footing;yet all of the advantages described previously applyeasily only to the passive model.\A passive model provides less protection, becauseclients must trust servers with their threads."Migration of a thread to a server object does notnecessarily grant the server any rights other than theright to temporarily execute in its scheduling context.With proper design, even this right can be revoked ortransferred back into the client object in a way thatfully maintains the protection of both the server andthe client. Our work on supporting migrating threadson Mach[7] demonstrates how this can be done.\The migration of threads violates encapsulation.Objects should be independent."This suggests a vision of self-su�cient islands ofcomputation 
oating within an abstract sea of noth-ingness, using only their own resources and relying onnothing else. Unfortunately, reality is di�erent: theremust always be some underlying fabric which deter-mines just what it means to be an object, how oper-ations are invoked on it, how it can �nd and operateon other objects, and what assumptions it can make:in short, the execution environment. A passive objectmodel simply includes as part of the basic fabric the\power to execute," rather than residing only withinthe object itself.\It is more di�cult to program in a passive model,because all objects must handle internal synchro-nization issues."It is true that in an active object model, a sim-ple object can be created requiring no internal syn-chronization by creating just one thread in the object.However, in a full microkernel implementation of pas-sive objects, it often turns out to be extremely easyto achieve the same e�ect, such as by creating onlyone \activation record" on which incoming threadscan run, or by maintaining a global lock acquired and



released automatically on entry and exit from the ob-ject.\It's easier to implement cross-node object invo-cation in an active object model, because the un-derlying hardware is inherently message-based."In some cases this is true. However, this does notchange the fact that the common case of object invo-cation is synchronous. At some level synchronous ob-ject invocations must be translated to asynchronousnetwork messages. This argument really just advo-cates moving this translation out of the microkerneland forcing applications to do it themselves. Consid-ering the fact that most object invocations in a well-tuned distributed system are in fact local, where syn-chronous invocation is more e�cient, even this is nota very convincing argument.\It's not really important whether a microkernelimplements passive or active objects as the under-lying abstraction, and most conventional operat-ing systems use active objects, so it's best to staythat way for backward compatibility."First, as we have already stated, object model is infact very important.Second, it should be recognized that most \conven-tional" operating systems are not object-oriented inthe �rst place. What are usually referred to as \ob-jects" in these systems are extremely large, course-grained processes communicating through high-level,heavyweight channels. These traditional channels aretypically implemented outside of the microkernel any-way, and therefore are not dependent on the under-lying object model supported by the microkernel anymore than the rest of the system is.Finally, we note that from an application's perspec-tive, even ones which directly interface with the mi-crokernel's basic abstractions, the di�erence in objectmodel is not necessarily highly visible. For the mostpart, applications merely see passive objects as fasterand more 
exible versions of active objects. This isdemonstrated in [7], in which active objects are re-placed with passive objects in an existing system, in abackward-compatible way, with no changes to clientsand only minor changes to servers.4 ConclusionAs a fundamental execution model for microkernels,passive objects provide more functionality, simplicity,

and speed than active objects, without giving up pro-tection or other bene�ts.References[1] Brian N. Bershad, Thomas E. Anderson, Ed-ward D. Lazowska, and Henry M. Levy.Lightweight remote procedure call. ACM Transac-tions on Computer Systems, 8(1):37{55, February1990.[2] John B. Carter, Bryan Ford, Mike Hibler, Ravin-dra Kuramkote, Je�rey Law, Jay Lepreau, Dou-glas B. Orr, Leigh Stoller, and Mark Swanson.FLEX: A tool for building e�cient and 
exible sys-tems. In Proc. Fourth Workshop on WorkstationOperating Systems, October 1993. To appear.[3] Je�rey S. Chase, Henry M. Levy, Michael J. Fee-ley, and Edward D. Lazowska. Sharing and pro-tection in a single address space operating system.Technical Report UW-CSE-93-04-02, University ofWashington Computer Science Department, April1993.[4] Roger S. Chin and Samuel T. Chanson. Dis-tributed object-based programming systems. ACMComputing Surveys, 23(1), March 1991.[5] Peter Druschel, Larry L. Peterson, and Norman C.Hutchinson. Beyond micro-kernel design: De-coupling modularity and protection in Lipto. InProc. of the 12th International Conference on Dis-tributed Computing Systems, pages 512{520, Yoko-hama, Japan, June 1992.[6] Bryan Ford, Mike Hibler, and Jay Lepreau. Noteson thread models in Mach 3.0. Technical ReportUUCS-93-012, University of Utah Computer Sci-ence Department, April 1993.[7] Bryan Ford and Jay Lepreau. Evolving Mach 3.0to use migrating threads. Technical Report UUCS-93-022, University of Utah, August 1993. A por-tion of this paper will appear in Proc. of the Winter1994 USENIX Conference.[8] Jay Lepreau, Mike Hibler, Bryan Ford, and Je�Law. In-kernel servers on Mach 3.0: Implemen-tation and performance. In Proc. of the ThirdUSENIX Mach Symposium, pages 39{55, Santa Fe,NM, April 1993.


