
Evolving Mach ��� to a Migrating Thread Model

Bryan Ford Jay Lepreau

University of Utah

Abstract
We have modi�ed Mach ��� to treat cross�domain remote procedure call �RPC� as a single

entity� instead of a sequence of message passing operations� With RPC thus elevated� we improved
the transfer of control during RPC by changing the thread model� Like most operating systems�
Mach views threads as statically associated with a single task� with two threads involved in an
RPC� An alternate model is that of migrating threads� in which� during RPC� a single thread
abstraction moves between tasks with the logical �ow of control� and 	server
 code is passively
executed� We have compatibly replaced Mach�s static threads with migrating threads� in an
attempt to isolate this aspect of operating system design and implementation� The key element of
our design is a decoupling of the thread abstraction into the execution context and the schedulable
thread of control� consisting of a chain of contexts� A key element of our implementation is that
threads are now 	based
 in the kernel� and temporarily make excursions into tasks via upcalls�
The new system provides more precisely de�ned semantics for thread manipulation and additional
control operations� allows scheduling and accounting attributes to follow threads� simpli�es kernel
code� and improves RPC performance� We have retained the old thread and IPC interfaces for
backwards compatibility� with no changes required to existing client programs and only a minimal
change to servers� as demonstrated by a functional Unix single server and clients� The logical
complexity along the critical RPC path has been reduced by a factor of nine� Local RPC� doing
normalmarshaling� has sped up by factors of ��
����� We conclude that a migrating�thread model
is superior to a static model� that kernel�visible RPC is a prerequisite for this improvement� and
that it is feasible to improve existing operating systems in this manner��

� Introduction and Overview

We begin by de�ning and explaining four concepts that are key to this paper� They are kernel and user
threads� remote procedure call� static threads� and migrating threads� We explain how kernel threads interact
in implementing RPC� and the di�erence between implementing RPC with static and migrating threads�

Threads As the term is used in most operating systems and thread packages� conceptually a thread is
a sequential �ow of control���� In traditional Unix� a single process contains only a single kernel�provided
thread� Mach and many other modern operating systems support multiple threads per process �per task in
Mach terminology�� called kernel threads� They are distinguished from user threads� provided by user�level
thread packages� which implementmultiple threads of control atop kernel�provided threads� by manipulation
of the program counter and stack from user�space� In the rest of this paper� we use the term 	thread
 to
refer to a kernel thread� unless quali�ed�

In most operating systems� a thread includes much more than the �ow of control� For example� in
Mach ������� a thread also �i� is the schedulable entity� with priority and scheduling policy attributes� �ii�
contains resource accounting statistics such as accumulated CPU time� �iii� contains the execution context of
a computation�the state of the registers� program counter� stack pointer� and references to the containing
task and designated exception handler� �iv� provides the point of thread control� visible to user programs
through a thread control port��

�This research was sponsored in part by the Hewlett�Packard Research Grants Program and by the OSF Research Institute�
�In Mach� a port is a kernel entity that is a capability� a communication channel� and a name� If one has the name of a port�

RPC Remote procedure call� as the name suggests� models the procedure call abstraction� but is imple�
mented between di�erent tasks� The �ow of control is temporarily moved to another location �the 	proce�
dure
 being called� and later returned to the original point and continued� RPC can be used between remote
computing nodes� but is often used between tasks on the same node� local RPC� This paper focuses only on
the local case� in the rest of the paper� for brevity� we use the unquali�ed term 	RPC
 to refer only to local
RPC �more restricted than the usual use of the term�� When a thread in a client task needs service provided
by another task� such as opening a �le� it bundles up a packet of data containing everything the service
provider �the server� or �le system in this case� needs to process the request� This is known as marshaling a
message� The client thread then invokes the kernel to copy the message into the server�s address space and
allow the server to start processing it� Some time later� the server returns its results to the client in another
message� allowing the client to continue processing�

It is important to note that although virtually all modern operating systems provide an RPC abstraction
at some level� there is a continuum in that support� Some OS�s support RPC as a fully kernel�visible entity
�Amoeba������ some provide a kernel interface and special optimizations for the combined message send and
receive involved in RPC� but fundamentally understand only one�way message passing �Mach�� while some
support RPC only through libraries layered on other inter�process communication �IPC� facilities �Unix��

Static Threads The di�erence between static and migrating threads lies in the way the control transfer
between client processing and server processing is implemented� In RPC based on static threads� two entirely
separate threads are involved� one con�ned to �or static in� the client task� and the other con�ned to the
server task� When the client invokes the kernel to start an RPC� the kernel not only copies the client�s
message into the server� but also puts the client�s thread to sleep and wakes up a thread in the server to
process the message� This thread� known as a service thread� was created previously by the server for the sole
purpose of waiting around for RPC requests and processing them� When the service thread is �nished with
the request� it invokes the kernel� which puts the server thread back to sleep and wakes up the client thread
again� In switching control from one thread to another� a full context switch is involved�a change of address
mappings� task� thread� stack� registers� priority� etc�� including an invocation of the kernel scheduler��

With RPC based on static threads� the server�s computational resources �the right to use the CPU� are
used to provide service to the client� In the object�oriented world� this is known as an 	active object

model���� because a server 	object
 contains threads that actively provide service�

Migrating Threads If RPC is fully visible to the kernel� an alternate model of control transfer can be
implemented� Migrating threads allows threads to 	move
 from one task to another as part of their normal
functioning� In this model� during an RPC the kernel does not block the client thread upon its IPC kernel
call� but instead arranges for it to continue executing in the server�s code� No service thread needs to be
awakened by the kernel�instead� for the purposes of RPC� the server is merely a passive repository for
code to be executed by client threads� It is for this reason that in the object�based world� this is called the
	passive object
 model� Only a partial context switch is involved�the kernel switches address space and
some subset of the CPU registers such as the user stack pointer� but does not switch threads or priorities�
and never involves the scheduler� There is no server thread state �registers� stack� to restore� The client�s
own computational resources �rights to the CPU� are used to provide services to itself� Note that binding in
this model can be very similar to that in a thread switching model and will be detailed in Section ����

Although most operating systems support RPC using the static thread model� whether kernel�visible or
not� it is important to note that this is not the case for all system services� All systems using the 	process
model
����� for execution of their own kernel code �e�g�� Unix� Mach� Chorus� Amoeba�� actually 	migrate

the user�s thread into the kernel address space during a kernel call� No context switch takes place�only the
stack and privilege level are changed�and the user thread�s resources are used to provide services to itself�

one can perform operations on the object it represents�
�Sometimes this invocation of the scheduler is heavily optimized and inlined into the IPC path� but it is still there�
�The �process model� is in contrast to the �interrupt model�� as exempli�ed by the V operating system���� in which kernel

code must explicitly save state before potentially blocking�

�

Static vs� Migrating Threads In actuality� there is a continuum between these two models� For example�
in some systems such as QNX����� certain client thread attributes� such as priority� can be passed along to
�	inherited by
� the server�s thread� Or a service thread may retain no state between client invocations�
only providing resources for execution� as in the Peregrine RPC system����� Thus it can become impossible
to precisely classify every thread and RPC implementation� However� most systems clearly lie towards one
end of the spectrum or the other�

��� Providing Migrating Threads on Mach

Mach uses a static thread model� and a thread contains all of the attributes outlined in the 	Threads

paragraph above� In our work� we decoupled these semantic aspects of the thread abstraction into two groups�
and added a new abstraction� the activation stack� which records the client�server relationships resulting from
RPCs� A thread is now only� �i� the logical �ow of control� represented by a stack of activations in tasks� and
�ii� the schedulable entity� with priority and resource accounting attributes� An activation represents� �i�
the execution context of a computation� including the task whose code it is executing� its exception handler�
program counter� registers� and stack pointer� and �ii� the user�visible point of control�

The abstraction exported to user code that corresponds to the old 	thread
 abstraction is now what we
internally call the 	activation�
 This is not only what makes sense for the needs of user programs� but also
provides compatibility with original Mach ����

The real thread as de�ned above� the schedulable entity� is no longer subordinate to a task� By making
RPC a single identi�able entity to the kernel� and explicitly recording the relationship between individual
activations in the activation stack �which result from RPC�� we have elevated RPC to an entity fully visible
to� and supported by� the kernel� instead of a sequence of message passing operations� Our thread abstraction
now more closely models the original conceptual basis of a thread� a logical �ow of control� It turns out
that elevating the thread and RPC abstractions also enhances controllability� because the kernel can now
take more elaborate and precise actions on a single activation or on the entire thread� For example� it can
propagate information �	alerts
� along the chain of activations� Another bene�t of introducing to the kernel
the notion of an inter�task RPC� is that a number of aggressive IPC optimizations become possible� This
was one of our original motivations� but many other bene�ts have since surfaced�

��� Outline of Goals and Bene�ts

Our original goals in this project were several� �i� change Mach ����s thread model to a migrating one�
�ii� retain backwards compatibility� and �iii� enable performance improvements via RPC optimizations not
possible with static threads� During the design and implementation� we discovered we could achieve much
more� �iv� ordinary message�based �fully marshaled� RPC became much faster� �v� thread controllability was
enhanced� �vi� kernel code became much simpler� �vii� an apples�apples comparison of static vs� migrating
threads was achieved� and �viii� several other advantages� discussed below� became evident�

In the rest of this paper we describe this work in detail� We �rst discuss related work� then cover the
advantages of a migrating thread model� describe our kernel implementation and interface� including discus�
sion of the thread controllability issues� examine how RPC works in the new system� and mention how the
Unix server could be changed to better leverage migrating threads� Finally� we present the implementation
status and preliminary results� outline future work� and the conclusions we draw from this work�

� Related Work

Most operating systems use a static thread model� but there are a number of exceptions� Sun�s Spring����
operating system supports a migrating thread model very similar to ours� although it uses di�erent termi�
nology� Spring�s 	shuttle
 corresponds to our 	thread�
 and their 	thread
 corresponds to our 	activation�

Spring addresses the controllability issues but did not have to be concerned with backwards compatibility�
Alpha���� was probably the �rst system to fully adopt migrating threads� It is oriented to real�time con�
straints� and its migrating thread abstraction is especially important for carrying along scheduling� exception�
handling� and resource attributes� In both of these systems a thread can migrate across nodes in a distributed
environment� and indeed Alpha�s term for a migrating thread is a 	distributed thread�
 Psyche��
� is a single�
address�space system that supports migrating threads� The Lightweight RPC system��� on Taos exploited

�

migrating threads �control transfer� as a critical part of its design� but focused on high�performance local
RPC� and included additional data transfer optimizations� This makes it di�cult to isolate the bene�ts of the
improved control transfer� Object�oriented systems have traditionally distinguished between 	active
 and
	passive
 objects� corresponding to static and migrating thread models���� Clouds���� exempli�es a passive
object �migrating thread� model� while Emerald���� as we do� provides both active and passive objects�
support for both styles of execution� Chorus���� can use only thread�switching between user�level tasks�
but between tasks running in the kernel�s protection domain it has 	message handlers
 which operate in a
migrating thread model�

We believe that many of these migrating threads systems did not fully address the attendant controlla�
bility issues�did not fully support debugging or need to provide Unix signal semantics� for example�

	Scheduler activations
��� are kernel threads with special support for user�level scheduling� Scheduler
activations are concerned primarily with the behavior of kernel threads within a protection domain� while
our work deals with thread behavior across protection domains� As such� these works are largely orthogonal
and theoretically could be combined in the same system� but we do not deal with this issue here�

Except for LRPC on Taos� all of the existing systems supporting migrating threads were designed this
way from the start� They are all di�erent from traditional operating systems in many ways other than thread
model� To our knowledge� heretofore the thread model issue itself has not been separated out and examined�
comparing all of performance� functionality� and simpli�cation� Our goal is to do this by comparing the
two thread models in the same operating system� providing information focused on the thread model� By
implementing migrating threads on Mach ���� we also demonstrate how an existing operating system with
static threads can be adapted to migrating threads�

� Motivation

A migrating thread approach has several advantages which are outlined in this section� The majority of
the bene�ts are linked to use with RPC and are described �rst� But there are also controllability advantages
for threads during all kernel interaction� and these are outlined in section ���� In the context of the Alpha
OS� ���� also discusses many advantages o�ered by migrating threads�

��� Remote Procedure Call

Many of the advantages of migrating threads stem from their use in conjunction with RPC� Migrating
threads provide a more appropriate underlying abstraction on which to build RPC interfaces than do static
threads� Many of the problems with static threads stem from the semantic gap between the control model�
a procedure call abstraction within a single thread of control� and the mechanism used to implement the
model�two threads executing in di�erent tasks� Using migrating threads for RPC provides bene�ts in
performance� functionality� and in ease of implementation� Since RPC is very frequently used���� especially
in newer microkernel�based operating systems where most internal system interactions are based on RPC�
this aspect of the system can be of great importance in determining the performance and functionality of
the system as a whole�

Invocation E�ciency

For RPCs to be performed in the static thread model� two threads� one in each task� must synchronize
in the kernel� Two thread�to�thread context switches are required during the operation� one on call and one
on return� However� in the migrating thread model� the entire RPC can be performed by just one thread
that temporarily moves into the server task� performs the requested operation� and then returns to the client
task with the results� No synchronization� rescheduling� or full context switch need be done�

Thread migration also permits optimizations such as those done in LRPC��� and in other �exibly struc�
tured or shared address space systems� e�g�� Lipto����� FLEX�
�� and Mach In�Kernel Servers���� �
�� In these
systems there is some degree of inter�domain memory sharing or protection relaxation� thus blurring domain
boundaries� RPC implemented by threads that migrate from one domain to another can take advantage of
this boundary blurring� providing many optimizations in argument passing and stack handling� At the limit�
RPC implemented in a migrating thread model could be specialized to a simple procedure call�

�

These advantages apply in general to any service invocation mechanism� not just large servers invoked
through RPC� For example� in an object�based environment� invocation of relatively �ne�grained objects is
prohibitively ine�cient if all objects must be active� With passive objects� it is more feasible to apply similar
invocation abstractions to both medium and course�grained objects�

While the existence of fast� e�cient microkernels based on static threads demonstrates that high perfor�
mance is possible in that model� such systems often impose semantic restrictions that distort their implemen�
tation towards a migrating thread model� For example� QNX����� a commercial real�time operating system�
supports only unqueued� synchronous� direct process�to�process message passing with priority inheritance�
this design makes it a de facto migrating threads system� Other microkernels� such as L������ retain the full
semantics of static threads� but to achieve high performance must impose severe restrictions on the �exibility
of scheduling and other aspects of the system not directly related to RPC�

Thread Attributes and Real�time Service

In the static thread model� when a client task performs an RPC� control is transferred to an entirely
di�erent thread that has its own scheduling parameters such as execution priority� as well as other attributes
such as resource limits� Unless speci�c actions are taken� the attributes of the thread in the server will be
completely unrelated to those of the client thread� This can cause the classic problems of starvation and
priority inversion����� when a high�priority client is unfairly made to compete with low�priority clients that
are accessing the same server� On the other hand� if the client thread migrates into the server to perform
the operation� all such attributes can be properly maintained with no extra e�ort� Obviously� this issue is
of particular importance to systems providing real�time service�

A related advantage is in resource accounting� which can be made more accurate since the work done in
a server on behalf of a client can automatically be so attributed�

Interruptions during RPC

Often� due to asynchronous conditions� it is desired to interrupt an RPC in which a client is blocked�
either temporarily or permanently� To do this cleanly in the static thread model� it is not enough merely to
abort the message send�receive operation� because the server will continue processing the request without
any indication that the client no longer desires its completion� If some entity wants to abort an RPC in
which a thread is blocked� it must �nd the server to which the RPC is directed� know how to interact with
that server enough to send it a request to abort an RPC operation� and provide the server with some kind
of identi�cation specifying which RPC is to be aborted� This usually proves to be a complex and di�cult
process� In addition� every server that may be accessed must support these abort operations� This can be
di�cult to guarantee in practice� especially if any user�mode task can set itself up as a 	server
 and allow
other user threads to make RPCs to it� as Mach ��� allows� Migrating threads� on the other hand� provide
a channel through which standardized requests for interruption can be propagated�

Server Simpli�cation

In the case of 	personality servers
 that emulate monolithic operating systems such as Unix or OS��� we
expect migrating threads to simplify the server� because the original operating system on which the server is
based is likely to have used a limited migrating thread model� in which threads 	migrate
 into the monolithic
kernel for system calls� Maintaining this model in the personality server should achieve greater code re�use
and simplify the handling of system call interruptions� thread management� and control mechanisms such as
Unix signals�

We also expect migrating threads to simplify RPC service in servers� due to the anticipated simpler
management of activation pools than thread pools� as described in Section ����

Kernel RPC Path Simpli�cation

As later shown by our results in Section ���� migrating threads greatly simplify the kernel RPC path
as well� RPC paths based on migrating threads tend to be short and �ow naturally� while optimized RPC
paths based on static threads are often long� convoluted� and contain innumerable tests�

�

��� Thread Controllability and Kernel Simpli�cation

A migrating threads implementation gives other controllability and simpli�cation bene�ts unrelated to
RPC� In a static thread model� threads are often intended to be completely controllable resources� Ideally� in
this model� any entity with appropriate privilege� such as a program holding a 	thread control port
 in Mach
���� is able arbitrarily to stop a thread and modify its state� at any time� Conceptually� threads execute
only user�mode instructions� and therefore there is never a time when system integrity could be violated by
manipulation of the thread�

Unfortunately� this model in its purest form does not work in real operating systems� Threads must be
able to invoke kernel�level code in order to communicate with other entities in the system� if they are to do
anything more than pure computation� Since a thread executing unknown kernel code may not be arbitrarily
manipulated� the model of complete controllability must break down somewhat� it must be possible to defer
or reject thread control operations when necessary�

Traditional operating systems have various ways of working around this problem which usually work�
but are often complex� inconsistent� and unpredictable� For example� Mach ��� provides a thread control
operation which aborts a system call in which the target thread is blocked� so that the thread can be
manipulated� However� many kernel operations cannot be aborted in a transparent� restartable way� so the
entity trying to control the thread may have to wait an arbitrary length of time� or retry an arbitrary number
of times� before it can safely do so� If this is the case� who is really being controlled�the target thread� or
the thread trying to control it�

Since the complete controllability model is not realistic anyway� reducing the ambitiousness of the model�
to allow for migrating threads� provides more precisely de�ned semantics for thread manipulation� In fact�
by forcing the boundaries of controllability to be explicitly de�ned� and recording the �ow of control across
tasks� additional thread control mechanisms such as cross�domain 	alerts
 can be provided by the kernel�
De�ning the boundaries of control also makes all control mechanisms much simpler to implement� as shown
in Section ����

� Kernel Implementation

In this section we describe the underlying structure of our implementation of migrating threads in the
Mach ��� microkernel� Many of the techniques we used could be similarly applied to other traditional
multithreaded operating systems such as monolithic Unix kernels�

��� Thread Implementation

Conceptually� a traditional Mach ��� user thread started executing in a particular task� and occasionally
trapped into the kernel to communicate with 	outside
 entities� The kernel later returned from the system
call and resumed the user code� The initial and normal location of a thread was in user space� and threads
only 	visited
 the kernel occasionally� to request services�

In our migrating thread implementation� the situation is in a sense reversed� A thread starts executing
as a purely kernel�mode entity� and later makes an upcall���� into user space to run user code� Conceptually�
the kernel is 	home base
 for all threads� the only time user�level code is executed is during 	temporary
excursions
 into a task� A thread executing in user mode is associated with the task in which it is currently
running� but a thread running in the kernel is not tightly associated with any user�level task�

While a thread in the kernel can now make upcalls into user space� the traditional kernel�user interface
is still preserved� Once a thread is executing in user space� it can make calls back to the kernel in the form
of traps and exceptions� Alternatively� the kernel can make further upcalls into the same or a di�erent user
task� This rede�nition of the kernel�user interface is the primary mechanism supporting migrating threads
in our implementation�

A distinction should be made between the 	kernel
 and what we refer to as 	glue
 code� The kernel is
conceptually a protection domain much like a user�level task� in which threads can execute� wait� migrate in
and out� and so on� its primary distinction is that it is specially privileged and provides basic system control
services� Glue code is the low�level� highly system�dependent code that enacts the transitions between
all protection domains� both user and kernel� The distinction between the kernel and glue code is often

�

overlooked because both types of code usually execute in supervisor mode and are often linked together in
a single binary image� However� this does not necessarily have to be the case� for example� in QNX�����
the
K 	microkernel
 consists of essentially nothing but glue code� while the 	kernel proper
 is placed in a
specially privileged but otherwise ordinary process� It will become clear in later sections that even though
the kernel and glue code may still be lumped together� in the presence of migrating threads the distinction
between them becomes extremely important�

��� Control Abstractions and Mechanism

Even in the static thread model� in practice the goal of complete controllability of threads cannot be fully
realized� While the case of a thread being in the kernel can to some extent be worked around as a special
case� with the addition of migrating threads the controllability issue must be more carefully considered�
Now� not only is the kernel 	out of bounds
 for thread control� but in order to maintain protection between
tasks� threads that have migrated to other protection domains may also be uncontrollable� For example� if
one thread in a client migrates into a server for an RPC� it would not be permissible for another thread in
the same client to stop or manipulate the CPU state of the �rst thread while executing server code�

To provide controllability and protection at the same time� we split the concept of a 	thread
 into two
parts� the part used by the scheduler� and the part providing explicit control� The �rst� which we still
refer to as the 	thread�
 migrates between tasks and enters and leaves the kernel� The second� a user�mode
invocation or activation� remains permanently �xed to a particular task� Arbitrary control is permitted only
on a speci�c activation� not on the thread as a whole�

Whenever a thread migrates into a task �including the initial upcall from the kernel on thread creation��
an activation is added to the top of the thread�s 	activation stack�
 When a thread returns from a migration�
the corresponding activation is popped o� the activation stack� This new kernel�visible abstraction� the stack
or chain of activations� helps provide controllability�

Activations are created either implicitly during thread creation� or explicitly by servers expecting to
receive incoming migrating threads� An explicitly created activation is unoccupied until a thread migrates
into the task and 	activates
 it�

Within the kernel� control of activations is implemented primarily with asynchronous procedure calls� or
APCs� similar to asynchronous traps �ASTs� in monolithic kernels� When returning from the kernel into an
activation� glue code checks for APCs attached to the activation and if present� calls them� For example� to
suspend an activation� an APC is attached to that activation which will block until resumed� Previously�
Mach dealt with thread suspension as part of the scheduler� adding more complexity to its already�complex
state machine� now the scheduler knows nothing about one thread suspending another� Instead� the kernel�s
ordinary blocking mechanism is used� in which a thread only 	suspends
 itself�

��� Kernel Stack Management

Since the activation chain can be broken at any point� all linkage information between activations is
stored in the activations themselves� and a single kernel stack is su�cient for the entire thread� This is also
required for it to be possible to do task migration across nodes in a distributed system� because state held on
a kernel stack cannot be easily encapsulated for transport� This explicit saving of state is generically known
as using a continuation� although our implementation is very di�erent from the way continuations have been
used in Mach in the past����� In particular� we con�ne continuations purely to 	glue
 �transition� code� all
high�level kernel code uses an ordinary process model�

� Controllability� Semantics� Interface� and Implementation

In this section we describe the semantics of thread control operations� the interface to those operations�
and some aspects of the implementation� We believe our approach could be similarly applied to other
traditional multithreaded operating systems�

��� Thread Control Interface

In the original Mach kernel� threads were exported to user�mode programs in the form of thread control
ports� through which control operations could be invoked� In our system� while threads still exist� the control

abstraction presented to user�level code is instead the activation control port� This can work because the old
thread execution abstraction exported to the user was bound to a single task� like activations are now� We
maintain compatibility with existing Mach code by making activation control ports direct replacements for
thread ports at the binary level�all system calls which previously expected or returned thread ports now
use activation ports instead� For compatibility at the source level� appropriate synonyms are provided�

Alerts

In our migrating threads implementation� we have provided the functionality of Mach ����s thread abort

call� which aborts an in�progress kernel operation and returns control to user code� However� we have provided
it in a cleaner and more general form� An alert is a form of asynchronous message passed from a client to the
kernel or a server it is calling� asking the callee to abort the requested operation and return control to the
client as soon as possible� Alerts are primarily an information�passingmechanism supported by the kernel in
a uniform way� They do not in themselves provide control over threads� because they have no forcefulness�
alerts are merely 	requests�
 not 	demands�
 We currently implement only a polling interface for a server
to discover an alert� but probably will also provide an exception interface in the future� Alerts are much like
those in Spring����� The 	Alert
 and 	TestAlert
 facilities of Taos��� are analogous� but apparently do not
operate cross�domain�

By default� new activations added to a thread�s stack have alerts blocked� to prevent interference with an
unwary server�s functioning� The kernel is already capable of honoring most alerts� and new servers written
to work with migrating threads can be designed to honor them too� In e�ect� we have provided a generic
interruption request mechanism which works uniformly for both migrating RPCs and kernel calls�

We also provide another operation which �rst generates an alert at the target activation� then breaks the
chain� returning control to the client immediately� This works much like termination� discussed below�

Suspension

In Mach ��� thread semantics� the basic purpose of suspending a thread is to prevent it from executing

any more user�mode instructions until it is resumed� Therefore� suspending a task�s threads turns that
task into a 	passive entity�
 allowing its address space and other state to be examined or modi�ed without
interference from its threads� It is not required that all of the thread�s computation be immediately stopped�
as long as that computation does not implicitly reference the thread�s task� For example� explicit device
I�O could be allowed to proceed while the thread is suspended� but kernel copyin and copyout operations�
which implicitly a�ect the task�s address space� could not�

Our current implementation allows such kernel activity to proceed� We do not expect this to be a problem
in practice� but in any case it should be solved as a side�e�ect of related work� In that work we are further
separating kernel code from 	glue
 code �described earlier�� When an activation is suspended� the kernel
ensures that neither user�mode or glue instructions will be executed in that activation� If the thread is
executing elsewhere� it will not be a�ected until it attempts to return to the suspended activation�

To maintain correct suspension semantics in this model� implicit references made by kernel system calls
to the caller�s task must be con�ned to glue code� This is relatively easy to do in Mach because most kernel
calls are implemented as generic RPCs to kernel objects� only the low�level RPC code needs to obey the
control semantics� not the actual code implementing the kernel calls��

Termination

The termination mechanism in our implementation is illustrated in Figure �� If an activation not at the
top of a thread�s activation stack is terminated� or if the thread is in a kernel call at the time� then the
thread splits into two separate threads with identical scheduling parameters� One thread is left with the
top part of the activation stack� above the terminated activation� and the other thread is given the bottom
part� The thread with the upper segment continues executing in the topmost server uninterrupted� ensuring
that thread termination does not violate protection� An alert is automatically propagated upward through

�Note that traditional Unix suspension semantics are stronger than Mach suspension semantics	 they imply that kernel
operations are actually completed or aborted before the thread is suspended� On Mach� both with static and migrating threads�
implementing Unix suspension semantics involves other Mach control operations in addition to simple Mach suspension�

�

Figure �� Activation Termination

Kernel

Task Failed Task Task

abort
request

error
return

this thread� providing a hint that the work being done is probably no longer of value� The thread given the
bottom part of the activation stack returns to its now�topmost activation with an appropriate error code�
This is essentially the same as the termination mechanism used in Spring��

In our system� not only can a thread be split when running in user mode in a more recent activation than
the terminated activation� but also when the thread is executing in the kernel� on behalf of the terminated
activation� Previously� attempting to terminate a thread could potentially block for some time� while the
caller waited for the victim to leave the kernel or otherwise get to a 	clean point�
 In the new model�
terminating an activation is always an immediate operation� if the terminated activation happens to be
calling the kernel� then it is left behind to �nish whatever operation it was performing and quietly self�
destruct afterwards� The issue of glue and kernel operations implicitly a�ecting the thread�s task is dealt
with as described above under 	Suspension�

Our termination mechanism required careful planning of kernel data structures and locking mechanisms�
in particular� the line between the kernel and glue code had to be de�ned precisely� Once worked out� however�
this technique not only added additional controllability� but considerably simpli�ed the implementation of
control mechanisms in the kernel� as we show in Section ����

CPU State

The original Mach ��� design provided thread operations which� in the 	ideal
 complete controllability
model� would allow a thread�s entire CPU state to be saved� restored� examined� and modi�ed at any time� All
CPU state operations were provided by two primitives� thread get state and thread set state� de�ned
to produce consistent results only while the target thread was suspended� However� because of the problems
with the complete controllability model� many of the things for which the CPU state control mechanisms
are commonly thought to be useful� in fact cannot be reliably implemented in bounded time in Mach ��������
For example� encapsulation of a task�s state for checkpointing or transportation to another node either may
require the controlling thread to wait an arbitrarily long time� or else requires aborting kernel operations�
yielding potentially inaccurate state�

Since the existing CPU state control operations are already problematic� and it would be di�cult to
achieve complete backward compatibility with them� we chose to structure these operations in our migrating
threads implementation to �t current uses of these operations� in particular� those made by the Unix server

�We are considering providing alternate termination semantics which fully preserve the synchronous nature of RPC� The
terminated activation would be merely spliced out� so control is returned to the earlier activations only after those later in the
chain have exited� It may not be possible to guarantee these semantics over a partitionable network� however�

�

and emulator� and by application that create their own threads and control them in straightforward ways�

Mach ��� requires thread abort to be called on a thread just before examining or setting its state�
unless the thread has just been created� Otherwise� the state operation could work with 	stale
 information�
producing useless results� Under migrating threads� aborting an activation before manipulating its state
is not strictly required� If not done� the CPU state operations wait patiently until the thread is in the
target activation� without interfering with its functioning� Thus we have loosened the restrictions on these
operations while maintaining backwards compatibility with their only valid usage in original Mach ����

Scheduling Parameters

The �nal Mach ��� thread control operations that must be mapped to activation operations are those
managing thread scheduling parameters such as priority� scheduling policy� and CPU usage statistics� Unlike
the operations described above� these operations are still conceptually performed on threads rather than
activations� However� the original Mach ��� thread control ports have become activation ports� raising the
question of how the interface for these operations should be handled�

Since every active activation is attached to exactly one thread� in our current implementation we export
thread operations as operations on activations� and� in the kernel� redirect the operations to the attached
thread� However� this raises a protection problem� since any activation in the thread can modify the global
scheduling state� For example� a server could lower a thread�s maximum priority �which cannot be raised
without special privileges� while processing an RPC� leaving the client with a 	crippled
 thread upon return�
In our initial implementation� this is not a problem in practice because the Unix server is trusted by all clients�
A better solution would be to provide an activation operation which forbids future activations higher in the
stack from changing global thread state� Thread state could still be manipulated from that activation or
lower �assuming it has not also been forbidden at a lower level��

��� Task Control Interface

Most task control operations work the same way under migrating threads as in the original Mach de�
sign� Others were modi�ed in straightforward ways to match the new thread model� In particular� the
task threads call now returns a list of the activation ports of the task� instead of thread ports� When a
task is suspended� resumed� or terminated� all of the activations within it �instead of threads� are similarly
suspended� resumed� or terminated�

� Migrating RPC

Once the basic kernel mechanism for supporting migrating threads was in place� it remained to demon�
strate its e�ect on RPC performance and complexity� Because our focus at this point is primarily on control
transfer during RPC� our initial implementation retains the original Mach data transfer interface� based on
marshaling and unmarshaling done by user�mode stubs� In this section we describe this RPC system� as
well as the changes required to servers to make them support migrating RPC� �No changes were required to
make them run with traditional RPC� since the kernel itself is almost completely backward compatible��

��� Client�side

From the client�s point of view� RPC semantics� including binding� are unmodi�ed� Existing binaries
with normal mach msg calls are supported� the kernel checks the message options to make sure they specify a
true RPC� and checks the destination port to ensure that the server is capable of handling migrating RPCs�
In practice� almost all MIG�generated mach msg calls meet these requirements� so most clients automatically
make use of migrating RPC� Note that the data can still contain port rights and out�of�line memory�

��� Server�side

Initializing a server to support migrating RPCs is done in nearly the same way as in servers supporting
only thread�switching RPC� In accomplishing the major portion of binding� the server exports send rights
to clients� exactly as before� In addition� the server must create one or more unoccupied activations� each
containing a pointer to a stack in its own address space� and in the �nal portion of binding� the entry point

��

of its normal dispatch function�� Providing this information to the kernel can be encapsulated within a
function� e�g�� in the cthreads package�

Traditional static�thread RPC is still supported automatically� A large pool of server threads is no longer
needed� but at least one must still exist to process occasional asynchronous messages� because in the current
implementation this is used as a fallback mechanism when migrating RPC cannot be used�

When a migrating RPC is made into the server� the kernel allocates an unoccupied activation from the
server�s pool� copies the incoming message onto the server stack� and makes an upcall into the server task
to the dispatch routine� This MIG�generated routine is identical to the one used to dispatch traditional
messages� except that it returns through a special kernel entrypoint� On return� the kernel does not need to
do any security checks or port manipulation� and the reply port provided by the client in the mach msg call
is never used at all�

If a migrating RPC is attempted and the kernel discovers that there are no activations currently available�
in our initial implementation the kernel falls back to the normal message path� causing a normal message
to be queued to the port� This is not ideal� and we plan to detect when the last available activation is
about to be used for a migrating RPC� and instead of immediately making the requested RPC� temporarily
	sidetrack
 and make a special noti�cation upcall into the server� At this point the server can create more
activations if it deems this desirable� If it does� it returns them to the kernel and the original RPC can
proceed� Otherwise� it returns immediately and the RPC blocks until a stack is freed�

When this is implemented� server management of an activation pool should be substantially more straight�
forward than management of a thread pool� for several reasons� The resources will be allocated on demand�
by client threads themselves� instead of resource needs having to be predicted in advance� by the server� The
server can use some simple decay function to deallocate activations �which are cheap for the kernel to manage
since they are simply passive data structures� in contrast to kernel threads�� In contrast� with a thread pool�
a server is separated by the kernel 	wall
 from clients� requests�if inadequate numbers of server threads
are present� client messages build up in the server�s queues without its knowledge� The server has a more
complex job as it attempts to keep the number of threads waiting for requests equal to or slightly greater
than the number of processors� it has to keep track of the number of threads waiting for messages� running
in the server� and blocked on outgoing RPCs or kernel calls� The last aspect is particularly awkward because
it requires surrounding every such blocking call with operations to wake up and manage server threads� If it
does not� deadlock can result� Finally� substantial complexity is due to multiplexing cthreads over kernel
threads� which cannot be done with migrating threads������ However� if it is found necessary to limit the
total number of executing threads in a particular server� in order to avoid saturation due to excessive kernel
context switching� some of this simpli�cation will not be present�

��� User�level Thread Issues

The most important issue with migrating RPC is that the user�level threads and synchronization package
most widely used on Mach� cthreads� has signi�cant limitations in the presence of migrating RPC�

Server Thread Management The cthreads library presents a signi�cant problem to the server of a
migrating RPC� Servers use cthreads to multiplex user threads on top of kernel threads� replacing kernel�
mode context switches with much faster user�level context switches� whenever possible� However� one of the
main assumptions made by the user�level threads package is that all of the kernel threads on which it is
running its user�level threads are interchangeable�that one kernel thread can be used for an operation just
as well as another� This assumption can be satis�ed in a static thread model� although in the process it
makes real�time monitoring and control of server threads di�cult�

In a migrating thread model� however� kernel threads migrating in from clients are not interchangeable�
they may have di�erent priorities and other attributes� Even ignoring this� the return�to�kernel after an
RPC has been processed must be done on the same kernel thread that the RPC came in on� In general�
trying to multiplex threads in this manner loses one of the main advantages of our design� providing a kernel

�When programming to the RPC stub generator interface� as is usually done� this is not a change in binding semantics�
�Skeptics should inspect the OSF
� server�s ux server loop and related code� where the outlined complexity was found

necessary for performance and safety�

��

entity �the activation stack� which represents a particular piece of work in progress� i�e�� an entire logical
thread of control� Therefore� multiplexing a server�s user�level threads on top of incoming kernel threads is
not appropriate� In cthreads� multiplexing can easily be avoided by 	wiring
 the user�level thread�

However� some speed is lost in the elimination of user�level thread multiplexing� because synchronization
operations in the server sometimes now require kernel�level context switches instead of user�level context
switches� Measuring real applications� including on multiprocessors� will be necessary before we can be
sure the gains from better RPC performance are not outweighed by this additional cost� We believe that
the speed advantage of user�level context switching is not as signi�cant in typical RPC servers as it is in
compute�intensive applications� which are the traditional benchmarks for thread implementations� In well�
designed servers providing 	system
 functions� we suspect that internal contention can be minimized so
that the importance of RPC speed outweighs that of context switch speed� We point out that in many
commercial microkernel�based systems� including QNX����� Chorus����� and KeyKOS���� OS servers do not
generally multiplex user�level threads over multiple kernel threads� Instead� these systems either provide
multithreading purely with kernel threads� or their functions are su�ciently decomposed so that each server
can be based on a single kernel thread� requiring no internal synchronization� However� until there is more
extensive performance analysis of servers using migrating RPC� losing user�level threads when servicing
RPCs remains a concern�

Note that it is only for 	guest
 threads migrating in from other tasks that user�level thread multiplexing
is a problem� threads native to the server can still use some kind of user�level thread system� or even a
specialized multiplexing mechanism such as scheduler activations�

A More Appropriate Synchronization System Since cthreads can no longer multiplex user�level
threads on kernel threads in servers� it should be replaced with a synchronization library better optimized
to provide synchronization over kernel threads� Also� kernel�visible synchronization will be necessary to
fully implement priority inheritance� as we discuss in a longer paper����� We are planning a replacement for
cthreads that provides synchronization primitives in a user�level library� but in cooperation with the kernel�

� The Unix Server

To function on the new kernel using traditional RPC� no changes were necessary to the OSF�� single
server and emulator� or to the libraries they use� To support migrating RPC� a few changes were required�
Initially� we chose ways which have minimal impact on existing code� but better� cleaner mechanisms can
be provided in the longer term� The server was modi�ed to invoke the new setup function in the cthreads
library and to wire incoming cthreads� The existing complex management of the server�s thread pool�
while basically no longer used� was retained� We made no modi�cations to the emulator� Since we are
providing backwards�compatible semantics for thread manipulation� no modi�cations were needed to the
existing complex code for handling Unix signals�

Even when our implementation is tuned� we do not anticipate a large performance improvement in the
single server� to a large extent because it was written with the assumption that RPC is very expensive�
Therefore� the server avoids RPC as much as possible� instead resorting to other approaches like shared
memory pages� whose performance is not enhanced by migrating RPC� However� our initial goal is not
primarily to show performance improvement� but to demonstrate the gain in simplicity and cleanliness
provided by migrating threads� and how migrating threads can be implemented in a backward�compatible
way in an existing operating system�

Desirable Modi�cations We anticipate that the Unix server could be made simpler with two modi�ca�
tions that take advantage of migrating threads� One is emulating Unix signals under Mach� and is described
in ����� Another is that because Mach ��� provides no standard way of propagating abort requests into
RPCs� the Unix server must manually handle all Unix system call interruptions such as those caused by
pending signals� It ought to be considerably simpli�ed by taking advantage of the propagating abort oper�
ations now provided by the kernel� This would also make interruption semantics naturally extend to other
servers in the system� such as ones installed by Mach�speci�c application programs running under Unix�

��

	 Results

	�� Status

We have completed the kernel implementation of the system described in this paper� An unmodi�ed
emulator�based Unix server runs normally on the new microkernel� using traditional thread�switching RPC�
A server modi�ed to provide activations� so that it uses migrating RPC� runs multi�user� Unix signals�
including �C and �Z� are working�

	�� Experimental Environment

All timings were collected on a single HP�����
�� with �� MB RAM� This machine has a �
 Mhz PA�
RISC ��� processor� ���K o�chip Icache� ���K o�chip Dcache� �� entry ITLB� and �� entry DTLB� with a
page size of �K� The caches are direct�mapped and virtually addressed� with a cache miss cost of about ��
cycles� RPC test times were collected by reading the PA�s clock register which increments every cycle� and
can be read in user mode� Other times were obtained from the Unix server�

The system software is our port of the Mach ��� kernel� version NMK����� and the emulator�based OSF��
single server� version �����b�� The compiler is GCC ������u� with full optimization�

	�� RPC Path Breakdown and Analysis

To analyze the ��� times speedup in null RPC presented in the next section� we counted instructions by
hand along the kernel�s null RPC path� These counts are broken down by type of processing in Table ��
along with the relative �old�new ratio� and absolute �number of instructions� improvement in each category�
��� of the improvement is due to the inverted server�kernel interface� since the kernel is now 	calling
 the
server rather than vice versa� the kernel no longer needs to save and restore the server�s registers on every
RPC� ��� results from the kernel�s 	�rst�hand
 knowledge of RPC� it no longer needs to create� translate�
and consume reply ports in order to match a reply to its request� ��� comes directly from the optimized
control transfer of migrating threads� switching activations is much simpler than switching threads� ��� of
the improvement is due to simpler data management� particularly the elimination of the need to maintain a
temporary message bu�er in the kernel�s address space due to direct copy from source to destination� It is
arguable whether this aspect is related to migrating threads��

It is interesting that nearly half of the cost of migrating RPC now resides at the kernel�client boundary
�more than half� if measured by memory operations�see below�� Therefore� further improvements to other
parts of the kernel RPC path will probably lead to only minimal overall speedup� That upcalls are so cheap
in comparison� especially in memory operations� may have implications for system structuring in a system
supporting migrating threads�

Table �� Null RPC Path� Breakdown and Improvement

Improvement Improvement
Instruction Count �Instructions� �Loads�Stores�

Stage Switch Migrate Sw
Mg

Sw �Mg Sw �Mg

Kernel entry�exit� Client side ��� ��� �� ��� ��� �
 �� � ��
Kernel entry�exit� Server side ��� ��� �� ��� ��� ��� ��� �� ���
Port translation ��� ��� �� �� �
�� ��� ��� �� ���
Thread�Activation switch ��� ��� �� ��� ���� �
� ��� ��� ���
Message copy ��� ��� �� ��� ��
 ��� ��� �� ���
Entire kernel path ���� ���� ��� ���� ��� ��� ���� ��� ����

The last two columns of Table � show the improvement for each stage� as measured by the number of
load�store operations� which should contribute disproportionately to total cycles due to memory subsystem

�At �rst sight� this aspect may seem completely orthogonal� However� on the switching path� the message copyin is at the
very beginning� while the copyout into the destination is at the end� separated by hundreds of lines of complex code� Combining
these into one direct copy operation would be very di
cult� On the much simpler and shorter migrating path� direct copy was
easy to support� Note that even with null RPC some copying is involved	 the � word message header�

��

costs� We observe that the percentage improvements in instruction count and memory operations are ap�
proximately equal for each stage of RPC� This suggests that instruction count is a valid measure of the
relative contribution of each stage to the overall performance gain�

Examination of the context switch code in the old optimized RPC path explains much of its cost� the
kernel essentially executes a portion of the scheduler specially hand�coded inline� Numerous constraints
must be satis�ed� both old and new threads must be in just the right states� run and wait queues must
be maintained correctly� locks on ports� threads� IPC spaces� and other data structures must be taken and
released in the right order to avoid deadlocks� timers are manipulated� interrupt levels are changed� resources
acquired along the way must be carefully tracked to ensure that it will be possible to unroll everything if�
for some reason� the computation falls o� the optimized path�

Table � shows the instruction mix for each path� broken into three categories� total instructions�
loads�stores� and branches� The migrating path has a somewhat higher percentage of loads and stores
���� vs� ����� presumably due to the fact that the basic memory�intensive aspects of IPC�register saving
and restoring� memory copying� and data structure traversal�are less obscured by computational overhead�
The relative incidence of branch instructions is much lower� however ���� vs� �
��� This� along with
the ninefold reduction in total number of branch instructions� re�ects the lower logical complexity of the
migrating path�

Table �� Null RPC Path� Instruction Mix

Switch Migrate
Stage All Load�Store Branch All Load�Store Branch

Kernel entry�exit� Client side ��� �� ��� �� �� �� �� ��� �� ���
Kernel entry�exit� Server side ��� �� ��� �� �� �� � ��� � ��
Port translation ��� �� ��� �� ��� �� � �
� � ��
Thread�Activation switch ��� �
� ���
� ��� �� ��
�� � ���
Message copy ��� �� ��� �� ��� �� �� ��� � ���
Entire kernel path ���� ��� ��� ��� �
� ��� ��� ��� �� ���

We expect that our results on the RPC path would� in general� extend to other architectures besides the
PA�RISC� Although sometimes di�cult� most architectures can achieve the single direct copy when the date
are contiguous� for example by temporary mapping����� Changing the interrupt priority level �IPL� is done
four times on the switching path due to scheduler involvement� but not at all on the migrating path� while
IPL changes are cheap on the PA�RISC� they are very expensive on some other architectures����� making
migrating threads especially important on them� The unavoidable cost of address space switching is much
higher on some architectures� which would lead to a lower improvement ratio� but even then we expect the
bene�ts to be considerable�

	�� Micro and Macro Benchmark Results

Measurements of the costs of cross�task migrating and traditional switching RPC are presented in Table ��
The columns on the left include only the kernel costs of RPC� while the ones on the right include both kernel
and user �marshaling� costs� obtained in another set of runs� On this machine� a null local RPC now spends
less than �� microseconds in the kernel� The speedup from migrating threads varies with parameter size
from a factor of ��� for null RPC� a factor of ��� for �K of data� to a factor of ��
 for long in�line marshaled
data� This factor of ��
 comes from the fact that the data is copied three times in the switching path�once
during marshaling and twice in the kernel�but only twice on the complete migrating path�

One interesting observation is that the number of cycles per instruction �CPI� is considerably worse on
the migrating path ���� � �������� than on the original path ���� � ����������� We believe that some or
all of this is due to two factors� the higher percentage of load�store instructions as described above� and
the fact that the instructions on the hand�coded migrating path were not carefully scheduled and optimized
like the C compiler did to most of the old path� Therefore� more careful coding of the migrating RPC path
could somewhat lower CPI� More investigation of the CPI di�erence is warranted�

��

Table �� RPC Times in Cycles

Kernel Time Kernel Time User Marshaling
Test Switching Migrating Ratio Switching Migrating Ratio

Null RPC ���� ��� ��� ���� ��� ���
�� In ��
� ��� ��� ���� ��� ���
�K In �
�� ��
� ��� ��
� ���� ���
��K In ��
���

�
���	�

�����

� �
��	

���

�
������ �����
 ��

The measurement of the kernel time for ��K migrating RPC showed severe side e�ects of the HP
���s
direct�mapped cache� At the top is our original measurement� a suspiciously low time resulting in a rather
unbelievable ���� speed improvement� Below it is the same measurement taken after shifting the message
bu�ers slightly so that the cache lines would con�ict� resulting in an improvement of ����� below the factor of
two we would expect due to the data being copied once instead of twice� This demonstrates the importance
of cache e�ects in data transfer� and deserves further investigation in the future�

As a preliminary test of overall performance impact� we measured the time for a 	make
 of the gas

assembler� Under migrating threads� the elapsed time went from ��� to ��
 seconds� an improvement of
about ��� The link phase took about � seconds� A link of a larger program �the HP linker itself�� improved
from �� seconds to �� seconds� an improvement of ���� We believe this greater improvement is due to ld
having a higher ratio of system calls to computation�

One area where we slow down is in RPCs to the kernel� These do not currently migrate since we haven�t
changed the kernel to provide activations on its ports� We do not expect doing so to be di�cult� When that
is done� all messages which originally would have used the optimized path �true RPCs�� should be migrating�

We expect a tuned implementation to achieve more overall speedup� and if other RPC optimizations
enabled by migrating threads are performed� signi�cantly more speedup�

	�� Kernel Code Simpli�cation

Con�ned Controllability Making threads independent of tasks and uncontrollable outside of user mode
greatly reduced code complexity in a number of areas� The source �le containing most thread control
operations was reduced by more than half� from
�K to ��K� In the new ��K source �le supporting activations�
support for control operations account for only about ��K��	 This simpli�cation largely resulted from cleaner
management of thread suspension� resumption� and termination� The original Mach ��� thread control
mechanisms had to make numerous tests for special cases� such as a thread manipulating itself� or two threads
trying to control each other simultaneously� possibly causing kernel deadlock� Now that controllability is
con�ned within well�de�ned boundaries� as it must be to support migrating threads� these tricky cases never
occur because kernel code is always 	out of bounds�

The task management code was reduced from ��K to ��K for similar reasons� the cleaner model simpli�ed
locking and eliminated many special�case situations such as the case of a thread terminating its own task�

Migrating RPC On the original switching path� the port translation and context switch code were mostly
written in machine�independent C code� while the other categories were PA�speci�c assembly language� On
the migrating RPC path� the machine�independent parts became so trivial that it was easier to inline them
into the assembly language path than to go to the trouble of interfacing with a high�level language��� The
entire ���� lines of complex C code comprising the optimized RPC path plus about ��� hand�coded assembler
instructions� were replaced with about ��� assembler instructions� The resultant simpli�cations in logical
complexity� a factor of nine� are evident from the �gures presented in Section ����

�	The rest is for allocation and freeing of activations and other administration� unrelated to the control operations�
��Although some speedup presumably resulted from assembly coding� we believe it was slight� and only feasible due to the

simplicity of the migrating path� Those who di�er are invited to inspect the original message path and try to hand�code it
without changing its semantics�

��

	�� Memory Use

In the original microkernel� in general only a few kernel stacks ��K each� were required per processor� due
to the continuations mechanism����� At the beginning of this project� we disabled continuations in order to
simplify our work� this immediately raised kernel memory use to one kernel stack per thread� However� with
migrating threads there are now far fewer threads in the system� and kernel stacks are still associated with
threads instead of activations� While running our multiuser benchmarks� we observe kernel physical memory
use to be at most ���K greater than in the original system� However� we are in the process of reintroducing
continuations under the new model� so even this increase should be temporary�

Regarding server virtual memory use� at this writing we statically allocate a large number of activations
���� and the old thread pool remains in the server� Therefore� about three times as much VM is used as
before ���� MB vs� �� MB� When we remove the thread pool� server VM use should be about the same as in
the old system� because for the most part each server thread�user stack becomes one server activation�user
stack� Of course� clients are una�ected because they are unmodi�ed�

 Future Work

This work enables many further improvements to Mach and Mach servers� as well as raising areas for
further research� Providing an appropriate replacement for the cthreads synchronization primitives is
important in order to make a fair evaluation of the impact of relying on kernel�level context switches� Our
earlier work on moving trusted servers into the kernel�s protection domain and address space �INKS�����
used ad�hoc thread migration� By re�working the thread abstraction from scratch� our new system solves all
of the problems encountered��
��

The 	NORMA
 �NO Remote Memory Access���� version of Mach ��� allows IPC between di�erent nodes
of a distributed memory multiprocessor� implemented in the microkernel� Extending the migrating thread
system to encompass RPC between nodes should be done� The issues involved have already been explored
in depth in Alpha�����

Going in a di�erent direction� our work allows improvements in Mach�s support for real�time systems� At
the implementation level� we have largely decoupled two portions of the thread abstraction� the schedulable
entity �priority� scheduling policies� etc�� from the thread of control �the chain of activations�� This makes
it feasible to decouple them entirely� enabling a full implementation of priority inheritance�

The Mach message format imposes unnecessary overhead on migrating RPC� The migrating thread
model enables other designs which could provide much higher performance� such as LRPC���� In cases where
protection domains have been merged����� much of the copying can be avoided�

The migrating RPC mechanism can also be used in thread exception processing� This will allow a no�
emulator server� such as OSF���MK������ to do more e�cient argument copying� We believe migrating RPC
can also be leveraged by making the Mach pager interface synchronous� with a thread servicing its own page
faults� This requires security to be explicitly provided when untrusted pagers are involved�

The OSF Research Institute is adopting our code and is planning to make many of the above improve�
ments� in an Intel ��� base� Our code will also be available to interested parties�

�� Conclusion

We draw three main conclusions from our work� First� by changing the thread model of an existing
operating system� and evaluating the two versions� we show that a migrating thread model is superior to a
static model� Migrating threads provide superior functionality� performance� and code simpli�cation� In the
area of functionality� thread migration �i� provides more precisely de�ned semantics for thread manipulation
and additional control operations� �ii� allows scheduling and other attributes to follow threads� especially
important for real�time systems� In performance� thread migration �i� improves the performance of ordinary
RPC� and �ii� enables a multitude of aggressive RPC optimizations� especially in systems under current
research which provide cross�domain memory or address�space sharing� However� thread migration does have
the potential performance disadvantage of not allowing user�level threads that service RPCs to be multiplexed
atop multiple kernel threads� In reducing implementation complexity� thread migration simpli�es �i� kernel

��

code� and� we expect� �ii� server code� In each of these areas� our implementation and measurements have
demonstrated the �rst bene�t� while potential gains from the second seem evident� but have not yet been
realized through full implementation in our system�

Secondly� since migrating threads requires that the kernel treat local RPC as an identi�able semantic
entity� we conclude that operating system kernels should directly support the RPC abstraction�

Our third main conclusion is that it is feasible to improve at least some existing operating systems�
by changing their thread model from static to migrating� Even in the case of Mach ���� which has an
unusually rich thread�manipulation interface� we show that this far�reaching change can be made while
retaining backward compatibility� and with only moderate implementation e�ort� A key element of that
implementation is 	basing
 threads in the kernel� which temporarily make excursions into tasks via upcalls�

Acknowledgements

We especially thank Mike Hibler for his expert help with the implementation� as well as discussion of
controllability and signal issues� We thank Douglas Orr for varied help and Greg Minshall for his careful
review of an earlier draft� We had helpful discussions with many members of the OSF Research Institute
about many aspects of the system� and with the HP Labs Brevix group about controllability� The anonymous
referees� Brian Bershad� Rich Draves� and Alessandro Forin provided many useful comments on earlier drafts�
and we thank Mike Jones and Je� Mogul for all of that� plus their patient shepherding�

References

��� Thomas E� Anderson� Brian N� Bershad� Edward D� Lazowska� and Henry M� Levy� Scheduler acti�
vations� E�ective kernel support for the user�level management of parallelism� ACM Transactions on

Computer Systems� ���������
�� February �����

��� J� S� Barrera� A fast Mach network IPC implementation� In Proc� of the Second USENIX Mach

Symposium� pages ����� �����

��� Brian N� Bershad� Thomas E� Anderson� Edward D� Lazowska� and Henry M� Levy� Lightweight remote
procedure call� ACM Transactions on Computer Systems� ������
���� February �����

��� Andrew D� Birrell� An introduction to programming with threads� Technical Report SRC���� DEC
Systems Research Center� January �����

��� A� P� Black� N� Huchinson� E� Jul� H� Levy� and L� Carter� Distribution and abstract types in Emerald�
IEEE Trans on Software Engineering� SE����������
�� ���
�

��� Alan C� Bomberger and Norman Hardy� The KeyKOS nanokernel architecture� In Proc� of the USENIX
Workshop on Micro�kernels and Other Kernel Architectures� pages ������� Seattle� WA� April �����

�
� John B� Carter� Bryan Ford� Mike Hibler� Ravindra Kuramkote� Je�rey Law� Jay Lepreau� Douglas B�
Orr� Leigh Stoller� and Mark Swanson� FLEX� A tool for building e�cient and �exible systems� In
Proc� Fourth Workshop on Workstation Operating Systems� October �����

��� D� R� Cheriton� The V distributed system� Communications of the ACM� �������������� March �����

��� Roger S� Chin and Samuel T� Chanson� Distributed object�based programming systems� ACM Com�

puting Surveys� ������ March �����

���� David D� Clark� The structuring of systems using upcalls� In Proc� of the ��th ACM Symposium on

Operating Systems Principles� pages �
������ Orcas Island� WA� December �����

���� Raymond K� Clark� E� Douglas Jensen� and Franklin D� Reynolds� An architectural overview of the
Alpha real�time distributed kernel� In Proc� of the USENIX Workshop on Micro�kernels and Other

Kernel Architectures� pages ��
����� Seattle� WA� April �����

���� Michael Condict� Personal communication� November �����

���� Sadegh Davari and Lui Sha� Sources of unbounded priority inversions in real�time systems and a
comparative study of possible solutions� ACM Operating Systems Review� �������������� April �����

�

���� Richard P� Draves� Brian N� Bershad� Richard F� Rashid� and Randall W� Dean� Using continuations
to implement thread management and communication in operating systems� In Proc� of the ��th ACM

Symposium on Operating Systems Principles� Asilomar� CA� October �����

���� Peter Druschel� Larry L� Peterson� and Norman C� Hutchinson� Beyond micro�kernel design� Decou�
pling modularity and protection in Lipto� In Proc� of the ��th International Conference on Distributed

Computing Systems� pages �������� Yokohama� Japan� June �����

���� Partha Dasgupta et al� The design and implementation of the Clouds distributed operating system�
Computing Systems� ����� Winter �����

��
� Bryan Ford� Mike Hibler� and Jay Lepreau� Notes on thread models in Mach ���� Technical Report
UUCS�������� University of Utah Computer Science Department� April �����

���� Bryan Ford and Jay Lepreau� Evolving Mach ��� to use migrating threads� Technical Report UUCS�
������� University of Utah� November �����

���� Graham Hamilton and Panos Kougiouris� The Spring nucleus� a microkernel for objects� In Proc� of

the Summer ���� USENIX Conference� pages ��
����� Cincinnati� OH� June �����

���� Dan Hildebrand� An architectural overview of QNX� In Proc� of the USENIX Workshop on Micro�

kernels and Other Kernel Architectures� pages �������� Seattle� WA� April �����

���� D�B� Johnson and W� Zwaenepoel� The Peregrine high�performance RPC system� Software 	 Practice

and Experience� �������������� February �����

���� Jay Lepreau� Mike Hibler� Bryan Ford� and Je� Law� In�kernel servers on Mach ���� Implementation
and performance� In Proc� of the Third USENIX Mach Symposium� pages ������ April �����

���� Jochen Liedtke� Improving IPC by kernel design� In Proc� of the �
th ACM Symposium on Operating

Systems Principles� Asheville� NC� December �����

���� Open Systems Foundation and Carnegie Mellon Univ� MACH � Kernel Interface� �����

���� Simon Patience� Redirecting system calls in Mach ���� An alternative to the emulator� In Proc� of the
Third USENIX Mach Symposium� pages �
�
�� Santa Fe� NM� April �����

���� M� Rozier� V� Abrossimov� F� Armand� I� Boule� M� Gien� M� Guillemont� F� Herrmann� C� Kaiser�
S� Langlois� P� L!eonard� and W� Neuhauser� The Chorus distributed operating system� Computing

Systems� �������
����� December �����

��
� Michael L� Scott� Thomas J� LeBlanc� and Brian D� Marsh� Design rationale for Psyche� a general�
purpose multiprocessor operating system� In Proc� of the ���� International Conference on Parallel

Processing� pages �������� August �����

���� Daniel Stodolsky� J� Bradley Chen� and Brian N� Bershad� Fast interrupt priority management in
operating system kernels� In Proc� of the Second USENIX Workshop on Micro�kernels and Other

Kernel Architectures� San Diego� CA� September �����

���� Vrije Universiteit� Amsterdam� NL� The Amoeba ��� Reference Manual
 Programming Guide� ����� rpc
manual page� ftp�cs�vu�nl�amoeba�manuals�pro�ps�Z�

Author Information

Bryan Ford is an undergraduate in Computer Science at the University of Utah� His current major research

interest is improving Mach ���� but he pursues other interests� including data compression� languages� graphics� and

music� He is the author of several widely used packages for the Amiga� including the XPK compression package and

the MultiPlayer music program� Bryan is the designer and primary implementor of Mach migrating threads�

Jay Lepreau is Assistant Director of the Center for Software Science� a research group within Utah�s Computer

Science Department which works in many aspects of systems software� He has worked with Unix since ����� and

has served as co�chair of the ��	
 USENIX conference and on numerous other USENIX program committees� His

group has made signi�cant contributions to the BSD and GNU software distributions� His current research interests

include �exible system structuring� with operating system� language� linking� and runtime components�

The author�s addresses are
 Center for Software Science� Department of Computer Science� University of Utah�

	
���� They can be reached electronically at fbaford�lepreaug�cs�utah�edu�

Unix is a trademark of USL� OSF
� is a trademark of the Open Software Foundation� OS
� is a trademark of IBM�

��

