Unmanaged Internet Protocol
Taming the Edge Network Management Crisis

Bryan Ford
Massachusetts Institute of Technology
HotNets II – November 21, 2003
“Ubiquitous Networking”

- What is it?
- Why isn't it here yet?
- How can we make it work?
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario

DSL/Cable Internet

Ethernet

Computer

Person

Router
A Ubiquitous Networking Scenario

- Ethernet
- DSL/Cable Internet
- DSL/Cable Internet to Ethernet
- Ethernet to Internet

Diagram: Laptop connected to DSL/Cable Internet router, which also connects to a desktop computer.
A Ubiquitous Networking Scenario

802.11

DSL/Cable Internet

Ethernet
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario

Internet

Joe

Jim
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario

“NAT?”
A Ubiquitous Networking Scenario

“NAT?”
“Dynamic DNS?”
A Ubiquitous Networking Scenario

“NAT?”

“Dynamic DNS?”

“Mobile IP?”
A Ubiquitous Networking Scenario
A Ubiquitous Networking Scenario

Joe

Jim
A Ubiquitous Networking Scenario

Joe

Jim
A Ubiquitous Networking Scenario

Joe

Jim
A Ubiquitous Networking Scenario

“Ad-hoc mode?”

Joe

Jim
A Ubiquitous Networking Scenario

“Ad-hoc mode?”

“DHCP?”

Joe

Jim
A Ubiquitous Networking Scenario

“Ad-hoc mode?”

“DHCP?”

“Static IP addresses?”
A Ubiquitous Networking Scenario

Joe

Jim
The Problem

Getting “ubiquitous networking” devices to \textit{ubiquitously network} is way too complicated, even when the technology is available.
Outline

- Motivation: What's wrong?
 - Why doesn't ubiquitous networking work?
 - *Answer:* hierarchical address-based routing (ABR).
 - How do we fix it?
 - *Answer:* scalable identity-based routing (IBR).
- A proposed identity-based routing architecture
- Conclusion
Why IP is Wrong for Edge Networks

- Hierarchical address architecture
 - Routable addresses must be allocated from central administrative authorities
 - Each node must be assigned an address:
 - Static assignment ⇒ inconvenient, requires knowledge
 - DHCP ⇒ nodes can't talk at all without DHCP server
 - Address hierarchy must reflect topology
 - Node mobility ⇒ address instability, broken connections
 - Good for scalability, bad for useability
What about ad-hoc routing protocols?

- Landmark, DSR, DSDV, AODV, etc.
- A big step in the right direction, *but*:
 - Not scalable beyond local area (≈hundreds of nodes)
- Good for outdoor geek parties
- Useless for Joe and Jim
We need ad-hoc routing

at Internet-Wide Scale
We need ad-hoc routing at Internet-Wide Scale
A Proposed Identity-Based Routing Protocol Architecture
UIP: “Unmanaged Internet Protocol”

- **Transport Layer**: TCP, UDP, SCTP
- **Network Layer**:
 - **Identity-Based Routing**: UIP
 - **Address-Based Routing**: IPv4, IPv6, GRID, etc.
- **Link Layer**: Ethernet, 802.11, Bluetooth, PPP, etc.
Key Properties of UIP

• “Unmanaged” = “Manages Itself”
 - No central authority required to hand out addresses
 - No explicit maintenance of routing and forwarding
 - No futzing or broken connections when nodes move

• Operates both:
 - Over IPv4/IPv6 as a scalable overlay network
 - Directly over Ethernet and other link layers
UIP Node Identifiers

Cryptographic hash of node's public key (ala HIP):

- **Automatically generated** by node itself
- **Stable** for as long as owner of node desires
- **Self-authenticating** for privacy and integrity
- **Topology-independent** for host mobility
- **Globally unique, cryptographically unforgeable**
Why This Is Hard

- Must give up hierarchical address architecture, but still get scalability to millions of nodes!
- Can't require each node to maintain and propagate state about every other node
- ...But theoretically feasible: Arias et al. “Compact Routing with Name Independence,” SPAA 2003
Idea!

What about adapting Peer-to-Peer Distributed Hash Table (DHT) lookup algorithms?
The Intuition

- DHTs provide:
 - Lookup on topology-independent keys
 - $O(\log n)$ state, maint. traffic per node
The Intuition

- DHTs *don't*:
- Forward around discontinuities
- Traverse NATs (usually)
- Route between Internet & Ad-hoc Networks
A First Approximation

- Two-level stratification
- “Core” nodes maintain DHT
- “Edge” nodes reachable thru core nodes
- Example: i3
A First Approximation

- Limitations:
 - Must configure whether node is "core" or "edge"
 - Discontinuities in "core" network
 - Disconnected edge nodes can't talk
What We Want

- Unstratified
What We Want

- Unstratified
- Forwarding around holes (RON)
What We Want

- Unstratified
- Forwarding around holes (RON)
What We Want

- Unstratified
- Forwarding around holes (RON)
- ...thru NATs
What We Want

- Unstratified
- Forwarding around holes (RON)
- ...thru NATs
- Autonomous ad-hoc rings
What We Want

- Unstratified
- Forwarding around holes (RON)
- ...thru NATs
- Autonomous ad-hoc rings
What We Want

- Unstratified
- Forwarding around holes (RON)
- ...thru NATs
- Autonomous ad-hoc rings
- Inter-domain routing
Forwarding Mechanisms

- **Source Routing**
 - Nodes can store source routes, not just IP addresses, in their DHT neighbor tables.
 - Source routes not usually very long, because UIP sees Internet as “one big link.”

- **Virtual Link Forwarding**
 - Source routes restricted to two hops, but recursively composable
 - Distributes routing information throughout path
Source Routing
Source Routing

New node
Source Routing

Z's Neighbor Table

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

New node
Source Routing

Z's Neighbor Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 12.34.56.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial (Direct) Neighbor
Source Routing

Z's Neighbor Table

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.34.56.78</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>23.45.67.89</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>34.56.78.90</td>
<td></td>
</tr>
</tbody>
</table>

Direct Neighbors

A → B, C, D, E
C → B, D, E, G
D → A, C, E
E → A, C, D, Z
Z → E, H, A
Source Routing

Indirect Neighbors

Z's Neighbor Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.34.56.78</td>
</tr>
<tr>
<td>C</td>
<td>23.45.67.89</td>
</tr>
<tr>
<td>E</td>
<td>34.56.78.90</td>
</tr>
<tr>
<td>H</td>
<td>[C → H]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source Routing

Z's Neighbor Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.34.56.78</td>
</tr>
<tr>
<td>C</td>
<td>23.45.67.89</td>
</tr>
<tr>
<td>E</td>
<td>34.56.78.90</td>
</tr>
</tbody>
</table>

Indirect Neighbors:

- H: [C → H]
- G: [C → H → G]
What We Have
What We Have

Virtual Ring

Physical Rings

NAT
Source Routing

Z's Neighbor Table

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.34.56.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>23.45.67.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>34.56.78.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>[C → H]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>[C → H → G]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges

- Forwarding path optimization
- Healing efficiently after arbitrary partitions
- Incentives for good behavior, resistance to denial-of-service attacks
Implementation Status

• Algorithm works under simulation
 – Up to 10,000 nodes, “Internet-like” networks
 – $\approx O(\log n)$ state and maintenance traffic observed
 – Heals quickly after partitions

• In progress:
 – Further algorithm refinement
 – Real-world prototype
Conclusion

• To get ubiquitous networking:
 – Edge nodes must be able to operate without centralized address assignment:
 Address-Based Routing \Rightarrow *Identity-Based Routing*
 – Edge routing protocols must be self-managing at global Internet-wide scales, not just locally

• Scalable IBR is hard, but should be feasible